Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.481
Filtrar
1.
Nucleus ; 15(1): 2310452, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38605598

RESUMO

The nuclear envelope (NE) separates translation and transcription and is the location of multiple functions, including chromatin organization and nucleocytoplasmic transport. The molecular basis for many of these functions have diverged between eukaryotic lineages. Trypanosoma brucei, a member of the early branching eukaryotic lineage Discoba, highlights many of these, including a distinct lamina and kinetochore composition. Here, we describe a cohort of proteins interacting with both the lamina and NPC, which we term lamina-associated proteins (LAPs). LAPs represent a diverse group of proteins, including two candidate NPC-anchoring pore membrane proteins (POMs) with architecture conserved with S. cerevisiae and H. sapiens, and additional peripheral components of the NPC. While many of the LAPs are Kinetoplastid specific, we also identified broadly conserved proteins, indicating an amalgam of divergence and conservation within the trypanosome NE proteome, highlighting the diversity of nuclear biology across the eukaryotes, increasing our understanding of eukaryotic and NPC evolution.


Assuntos
Membrana Nuclear , Trypanosoma , Humanos , Membrana Nuclear/metabolismo , Poro Nuclear/metabolismo , Saccharomyces cerevisiae/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Trypanosoma/metabolismo
2.
Cell Commun Signal ; 22(1): 208, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566066

RESUMO

This review presents a comprehensive exploration of the pivotal role played by the Linker of Nucleoskeleton and Cytoskeleton (LINC) complex, with a particular focus on Nesprin proteins, in cellular mechanics and the pathogenesis of muscular diseases. Distinguishing itself from prior works, the analysis delves deeply into the intricate interplay of the LINC complex, emphasizing its indispensable contribution to maintaining cellular structural integrity, especially in mechanically sensitive tissues such as cardiac and striated muscles. Additionally, the significant association between mutations in Nesprin proteins and the onset of Dilated Cardiomyopathy (DCM) and Emery-Dreifuss Muscular Dystrophy (EDMD) is highlighted, underscoring their pivotal role in disease pathogenesis. Through a comprehensive examination of DCM and EDMD cases, the review elucidates the disruptions in the LINC complex, nuclear morphology alterations, and muscular developmental disorders, thus emphasizing the essential function of an intact LINC complex in preserving muscle physiological functions. Moreover, the review provides novel insights into the implications of Nesprin mutations for cellular dynamics in the pathogenesis of muscular diseases, particularly in maintaining cardiac structural and functional integrity. Furthermore, advanced therapeutic strategies, including rectifying Nesprin gene mutations, controlling Nesprin protein expression, enhancing LINC complex functionality, and augmenting cardiac muscle cell function are proposed. By shedding light on the intricate molecular mechanisms underlying nuclear-cytoskeletal interactions, the review lays the groundwork for future research and therapeutic interventions aimed at addressing genetic muscle disorders.


Assuntos
Doenças Musculares , Distrofia Muscular de Emery-Dreifuss , Humanos , Membrana Nuclear/metabolismo , Membrana Nuclear/patologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Doenças Musculares/metabolismo , Citoesqueleto/metabolismo , Distrofia Muscular de Emery-Dreifuss/genética , Distrofia Muscular de Emery-Dreifuss/metabolismo , Distrofia Muscular de Emery-Dreifuss/patologia
3.
PLoS One ; 19(4): e0297738, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38626108

RESUMO

The nucleus preserves the genomic DNA of eukaryotic organisms and maintains the integrity of the cell by regulating the transport of molecules across the nuclear membrane. It is hitherto assumed that small molecules having a size below the passive permeability limit are allowed to diffuse freely to the nucleus while the transport of larger molecules is regulated via an active mechanism involving energy. Here we report on the kinetics of nuclear import and export of dextran molecules having a size below the passive permeability limit. The studies carried out using time-lapse confocal fluorescence microscopy show a clear deviation from the passive diffusion model. In particular, it is observed that the steady-state concentration of dextran molecules inside the nucleus is consistently less than the concentration outside, in contradiction to the predictions of the passive diffusion model. Detailed analysis and modeling of the transport show that the nuclear export rates significantly differ from the import rates, and the difference in rates is dependent on the size of the molecules. The nuclear export rates are further confirmed by an independent experimental study where we observe the diffusion of dextran molecules from the nucleus directly. Our experiments and transport model would suggest that the nucleus actively rejects exogenous macromolecules even below the passive permeability limit. This result can have a significant impact on biomedical research, especially in areas related to targeted drug delivery and gene therapy.


Assuntos
Núcleo Celular , Membrana Nuclear , Membrana Nuclear/metabolismo , Núcleo Celular/metabolismo , Dextranos/metabolismo , Transporte Ativo do Núcleo Celular , Difusão
4.
Exp Mol Med ; 56(3): 686-699, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38480902

RESUMO

Cancer cells often exhibit resistance to apoptotic cell death, but they may be vulnerable to other types of cell death. Elucidating additional mechanisms that govern cancer cell death is crucial for developing new therapies. Our research identified cyclic AMP-responsive element-binding protein 3 (CREB3) as a crucial regulator and initiator of a unique cell death mechanism known as karyoptosis. This process is characterized by nuclear shrinkage, deformation, and the loss of nuclear components following nuclear membrane rupture. We found that the N-terminal domain (aa 1-230) of full-length CREB3 (CREB3-FL), which is anchored to the nuclear inner membrane (INM), interacts with lamins and chromatin DNA. This interaction maintains a balance between the outward force exerted by tightly packed DNA and the inward constraining force, thereby preserving INM integrity. Under endoplasmic reticulum (ER) stress, aberrant cleavage of CREB3-FL at the INM leads to abnormal accumulation of the cleaved form of CREB3 (CREB3-CF). This accumulation disrupts the attachment of CREB3-FL to the INM, resulting in sudden rupture of the nuclear membrane and the onset of karyoptosis. Proteomic studies revealed that CREB3-CF overexpression induces a DNA damage response akin to that caused by UVB irradiation, which is associated with cellular senescence in cancer cells. These findings demonstrated that the dysregulation of CREB3-FL cleavage is a key factor in karyoptotic cell death. Consequently, these findings suggest new therapeutic strategies in cancer treatment that exploit the process of karyoptosis.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Membrana Nuclear , Proteômica , Apoptose , DNA , Membrana Nuclear/metabolismo , Humanos , Linhagem Celular Tumoral , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo
5.
Nat Commun ; 15(1): 2315, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38485951

RESUMO

The cellular membrane in male meiotic germ cells contains a unique class of phospholipids and sphingolipids that is required for male reproduction. Here, we show that a conserved membrane fluidity sensor, AdipoR2, regulates the meiosis-specific lipidome in mouse testes by promoting the synthesis of sphingolipids containing very-long-chain polyunsaturated fatty acids (VLC-PUFAs). AdipoR2 upregulates the expression of a fatty acid elongase, ELOVL2, both transcriptionally and post-transcriptionally, to synthesize VLC-PUFA. The depletion of VLC-PUFAs and subsequent accumulation of palmitic acid in AdipoR2 knockout testes stiffens the cellular membrane and causes the invagination of the nuclear envelope. This condition impairs the nuclear peripheral distribution of meiotic telomeres, leading to errors in homologous synapsis and recombination. Further, the stiffened membrane impairs the formation of intercellular bridges and the germ cell syncytium, which disrupts the orderly arrangement of cell types within the seminiferous tubules. According to our findings we propose a framework in which the highly-fluid membrane microenvironment shaped by AdipoR2-ELOVL2 underpins meiosis-specific chromosome dynamics in testes.


Assuntos
Fluidez de Membrana , Telômero , Animais , Masculino , Camundongos , Proteínas de Transporte/metabolismo , Meiose , Membrana Nuclear/metabolismo , Esfingolipídeos/metabolismo , Telômero/genética , Telômero/metabolismo
6.
Sci Rep ; 14(1): 6388, 2024 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493209

RESUMO

The nuclear lamina serves important functions in the nucleus, providing structural support to the nuclear envelope and contributing to chromatin organization. The primary proteins that constitute the lamina are nuclear lamins whose functions are impacted by post-translational modifications, including phosphorylation by protein kinase C (PKC). While PKC-mediated lamin phosphorylation is important for nuclear envelope breakdown during mitosis, less is known about interphase roles for PKC in regulating nuclear structure. Here we show that overexpression of PKC ß, but not PKC α, increases the Lamin A/C mobile fraction in the nuclear envelope in HeLa cells without changing the overall structure of Lamin A/C and Lamin B1 within the nuclear lamina. Conversely, knockdown of PKC ß, but not PKC α, reduces the Lamin A/C mobile fraction. Thus, we demonstrate an isoform-specific role for PKC in regulating interphase Lamin A/C dynamics outside of mitosis.


Assuntos
Lamina Tipo A , Proteínas Nucleares , Humanos , Lamina Tipo A/metabolismo , Células HeLa , Fosforilação , Proteínas Nucleares/metabolismo , Lamina Tipo B/metabolismo , Laminas/metabolismo , Membrana Nuclear/metabolismo , Proteína Quinase C/metabolismo , Processamento de Proteína Pós-Traducional
7.
Int J Mol Sci ; 25(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474070

RESUMO

The herpesviral nuclear egress represents an essential step of viral replication efficiency in host cells, as it defines the nucleocytoplasmic release of viral capsids. Due to the size limitation of the nuclear pores, viral nuclear capsids are unable to traverse the nuclear envelope without a destabilization of this natural host-specific barrier. To this end, herpesviruses evolved the regulatory nuclear egress complex (NEC), composed of a heterodimer unit of two conserved viral NEC proteins (core NEC) and a large-size extension of this complex including various viral and cellular NEC-associated proteins (multicomponent NEC). Notably, the NEC harbors the pronounced ability to oligomerize (core NEC hexamers and lattices), to multimerize into higher-order complexes, and, ultimately, to closely interact with the migrating nuclear capsids. Moreover, most, if not all, of these NEC proteins comprise regulatory modifications by phosphorylation, so that the responsible kinases, and additional enzymatic activities, are part of the multicomponent NEC. This sophisticated basis of NEC-specific structural and functional interactions offers a variety of different modes of antiviral interference by pharmacological or nonconventional inhibitors. Since the multifaceted combination of NEC activities represents a highly conserved key regulatory stage of herpesviral replication, it may provide a unique opportunity towards a broad, pan-antiherpesviral mechanism of drug targeting. This review presents an update on chances, challenges, and current achievements in the development of NEC-directed antiherpesviral strategies.


Assuntos
Citomegalovirus , Herpesviridae , Citomegalovirus/metabolismo , Membrana Nuclear/metabolismo , Proteínas Virais/metabolismo , Herpesviridae/metabolismo , Fosforilação , Simplexvirus/metabolismo , Núcleo Celular/metabolismo
8.
Cells ; 13(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474395

RESUMO

Dystroglycan is a ubiquitously expressed heterodimeric cell-surface laminin receptor with roles in cell adhesion, signalling, and membrane stabilisation. More recently, the transmembrane ß-subunit of dystroglycan has been shown to localise to both the nuclear envelope and the nucleoplasm. This has led to the hypothesis that dystroglycan may have a structural role at the nuclear envelope analogous to its role at the plasma membrane. The biochemical fraction of myoblast cells clearly supports the presence of dystroglycan in the nucleus. Deletion of the dystroglycan protein by disruption of the DAG1 locus using CRISPR/Cas9 leads to changes in nuclear size but not overall morphology; moreover, the Young's modulus of dystroglycan-deleted nuclei, as determined by atomic force microscopy, is unaltered. Dystroglycan-disrupted myoblasts are also no more susceptible to nuclear stresses including chemical and mechanical, than normal myoblasts. Re-expression of dystroglycan in DAG1-disrupted myoblasts restores nuclear size without affecting other nuclear parameters.


Assuntos
Distroglicanas , Laminina , Distroglicanas/metabolismo , Laminina/metabolismo , Núcleo Celular/metabolismo , Membrana Celular/metabolismo , Membrana Nuclear/metabolismo
9.
J Cell Biol ; 223(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38456969

RESUMO

Coordination between nucleus and mitochondria is essential for cell survival, and thus numerous communication routes have been established between these two organelles over eukaryotic cell evolution. One route for organelle communication is via membrane contact sites, functional appositions formed by molecular tethers. We describe a novel nuclear-mitochondrial membrane contact site in the protozoan Toxoplasma gondii. We have identified specific contacts occurring at the nuclear pore and demonstrated an interaction between components of the nuclear pore and the mitochondrial protein translocon, highlighting them as molecular tethers. Genetic disruption of the nuclear pore or the TOM translocon components, TgNup503 or TgTom40, respectively, result in contact site reduction, supporting their potential involvement in this tether. TgNup503 depletion further leads to specific mitochondrial morphology and functional defects, supporting a role for nuclear-mitochondrial contacts in mediating their communication. The discovery of a contact formed through interaction between two ancient mitochondrial and nuclear complexes sets the ground for better understanding of mitochondrial-nuclear crosstalk in eukaryotes.


Assuntos
Núcleo Celular , Mitocôndrias , Toxoplasma , Células Eucarióticas , Mitocôndrias/genética , Mitocôndrias/metabolismo , 60482 , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Toxoplasma/citologia , Núcleo Celular/metabolismo , Membrana Nuclear/metabolismo , Poro Nuclear/metabolismo , Proteínas de Protozoários/metabolismo
10.
Sci Rep ; 14(1): 6013, 2024 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472343

RESUMO

Nuclear membrane rupture is a physiological response to multiple in vivo processes, such as cell migration, that can cause extensive genome instability and upregulate invasive and inflammatory pathways. However, the underlying molecular mechanisms of rupture are unclear and few regulators have been identified. In this study, we developed a reporter that is size excluded from re-compartmentalization following nuclear rupture events. This allows for robust detection of factors influencing nuclear integrity in fixed cells. We combined this with an automated image analysis pipeline in a high-content siRNA screen to identify new proteins that both increase and decrease nuclear rupture frequency in cancer cells. Pathway analysis identified an enrichment of nuclear membrane and ER factors in our hits and we demonstrate that one of these, the protein phosphatase CTDNEP1, is required for nuclear stability. Analysis of known rupture determinants, including an automated quantitative analysis of nuclear lamina gaps, are consistent with CTDNEP1 acting independently of actin and nuclear lamina organization. Our findings provide new insights into the molecular mechanism of nuclear rupture and define a highly adaptable program for rupture analysis that removes a substantial barrier to new discoveries in the field.


Assuntos
Actinas , Membrana Nuclear , Membrana Nuclear/metabolismo , Actinas/metabolismo , Movimento Celular , Lâmina Nuclear/metabolismo , Núcleo Celular/metabolismo
11.
Cell Mol Life Sci ; 81(1): 141, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38485766

RESUMO

Human papillomavirus (HPV) infection is a primary cause of cervical and head-and-neck cancers. The HPV genome enters the nucleus during mitosis when the nuclear envelope disassembles. Given that lamins maintain nuclear integrity during interphase, we asked to what extent their loss would affect early HPV infection. To address this question, we infected human cervical cancer cells and keratinocytes lacking the major lamins with a HPV16 pseudovirus (HP-PsV) encoding an EGFP reporter. We found that a sustained reduction or complete loss of lamin B1 significantly increased HP-PsV infection rate. A corresponding greater nuclear HP-PsV load in LMNB1 knockout cells was directly related to their prolonged mitotic window and extensive nuclear rupture propensity. Despite the increased HP-PsV presence, EGFP transcript levels remained virtually unchanged, indicating an additional defect in protein turnover. Further investigation revealed that LMNB1 knockout led to a substantial decrease in autophagic capacity, possibly linked to the persistent activation of cGAS by cytoplasmic chromatin exposure. Thus, the attrition of lamin B1 increases nuclear perviousness and attenuates autophagic capacity, creating an environment conducive to unrestrained accumulation of HPV capsids. Our identification of lower lamin B1 levels and nuclear BAF foci in the basal epithelial layer of several human cervix samples suggests that this pathway may contribute to an increased individual susceptibility to HPV infection.


Assuntos
Lamina Tipo B , Infecções por Papillomavirus , Feminino , Humanos , Lamina Tipo B/genética , Lamina Tipo B/metabolismo , Infecções por Papillomavirus/genética , Membrana Nuclear/metabolismo , Mitose , Cromossomos/metabolismo , Lamina Tipo A/genética , Lamina Tipo A/metabolismo
12.
Biochem Biophys Res Commun ; 703: 149656, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38364681

RESUMO

Dystroglycan (DG) is a cell adhesion complex that is widely expressed in tissues. It is composed by two subunits, α-DG, a highly glycosylated protein that interacts with several extracellular matrix proteins, and transmembrane ß-DG whose, cytodomain binds to the actin cytoskeleton. Glycosylation of α-DG is crucial for functioning as a receptor for its multiple extracellular binding partners. Perturbation of α-DG glycosylation is the central event in the pathogenesis of severe pathologies such as muscular dystrophy and cancer. ß-DG acts as a scaffold for several cytoskeletal and nuclear proteins and very little is known about the fine regulation of some of these intracellular interactions and how they are perturbed in diseases. To start filling this gap by identifying uncharacterized intracellular networks preferentially associated with ß-DG, HEK-293 cells were transiently transfected with a plasmid carrying the ß-DG subunit with GFP fused at its C-terminus. With this strategy, we aimed at forcing ß-DG to occupy multiple intracellular locations instead of sitting tightly at its canonical plasma membrane milieu, where it is commonly found in association with α-DG. Immunoprecipitation by anti-GFP antibodies followed by shotgun proteomic analysis led to the identification of an interactome formed by 313 exclusive protein matches for ß-DG binding. A series of already known ß-DG interactors have been found, including ezrin and emerin, whilst significant new matches, which include potential novel ß-DG interactors and their related networks, were identified in diverse subcellular compartments, such as cytoskeleton, endoplasmic reticulum/Golgi, mitochondria, nuclear membrane and the nucleus itself. Of particular interest amongst the novel identified matches, Lamina-Associated Polypeptide-1B (LAP1B), an inner nuclear membrane protein, whose mutations are known to cause nuclear envelopathies characterized by muscular dystrophy, was found to interact with ß-DG in HEK-293 cells. This evidence was confirmed by immunoprecipitation, Western blotting and immunofluorescence experiments. We also found by immunofluorescence experiments that LAP1B looses its nuclear envelope localization in C2C12 DG-knock-out cells, suggesting that LAP1B requires ß-DG for a proper nuclear localization. These results expand the role of ß-DG as a nuclear scaffolding protein and provide novel evidence of a possible link between dystroglycanopathies and nuclear envelopathies displaying with muscular dystrophy.


Assuntos
Distroglicanas , Distrofias Musculares , Humanos , Distroglicanas/química , Células HEK293 , Proteômica , Distrofias Musculares/metabolismo , Membrana Nuclear/metabolismo
13.
Int J Mol Sci ; 25(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38339214

RESUMO

Eye lens α-crystallin has been shown to become increasingly membrane-bound with age and cataract formation; however, to our knowledge, no studies have investigated the membrane interactions of α-crystallin throughout the development of cataracts in separated cortical membrane (CM) and nuclear membrane (NM) from single human lenses. In this study, four pairs of human lenses from age-matched male and female donors and one pair of male lenses ranging in age from 64 to 73 years old (yo) were obtained to investigate the interactions of α-crystallin with the NM and CM throughout the progression of cortical cataract (CC) and nuclear cataract (NC) using the electron paramagnetic resonance spin-labeling method. Donor health history information (diabetes, smoker, hypertension, radiation treatment), sex, and race were included in the data analysis. The right eye lenses CM and NM investigated were 64 yo male (CC: 0), 68 yo male (CC: 3, NC: 2), 73 yo male (CC: 1, NC: 2), 68 yo female (CC: 3, NC: 2), and 73 yo female (CC: 1, NC: 3). Similarly, left eye lenses CM and NM investigated were 64 yo male (CC: 0), 68 yo male (CC: 3, NC: 2), 73 yo male (CC: 2, NC: 3), 68 yo female (CC: 3, NC: 2), and 73 yo female (CC: 1, NC: 3). Analysis of α-crystallin binding to male and female eye lens CM and NM revealed that the percentage of membrane surface occupied (MSO) by α-crystallin increases with increasing grade of CC and NC. The binding of α-crystallin resulted in decreased mobility, increased order, and increased hydrophobicity on the membrane surface in male and female eye lens CM and NM. CM mobility decreased with an increase in cataracts for both males and females, whereas the male lens NM mobility showed no significant change, while female lens NM showed increased mobility with an increase in cataract grade. Our data shows that a 68 yo female donor (long-term smoker, pre-diabetic, and hypertension; grade 3 CC) showed the largest MSO by α-crystallin in CM from both the left and right lens and had the most pronounced mobility changes relative to all other analyzed samples. The variation in cholesterol (Chol) content, size and amount of cholesterol bilayer domains (CBDs), and lipid composition in the CM and NM with age and cataract might result in a variation of membrane surface mobility, membrane surface hydrophobicity, and the interactions of α-crystallin at the surface of each CM and NM. These findings provide insight into the effect of decreased Chol content and the reduced size and amount of CBDs in the cataractous CM and NM with an increased binding of α-crystallin with increased CC and NC grade, which suggests that Chol and CBDs might be a key component in maintaining lens transparency.


Assuntos
Catarata , Hipertensão , Cristalino , alfa-Cristalinas , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Membrana Nuclear/metabolismo , Cristalino/metabolismo , Catarata/patologia , Colesterol/metabolismo , Hipertensão/metabolismo
14.
Nat Commun ; 15(1): 1070, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326317

RESUMO

In eukaryotes, cytoplasmic and nuclear volumes are tightly regulated to ensure proper cell homeostasis. However, current methods to measure cytoplasmic and nuclear volumes, including confocal 3D reconstruction, have limitations, such as relying on two-dimensional projections or poor vertical resolution. Here, to overcome these limitations, we describe a method, N2FXm, to jointly measure cytoplasmic and nuclear volumes in single cultured adhering human cells, in real time, and across cell cycles. We find that this method accurately provides joint size over dynamic measurements and at different time resolutions. Moreover, by combining several experimental perturbations and analyzing a mathematical model including osmotic effects and tension, we show that N2FXm can give relevant insights on how mechanical forces exerted by the cytoskeleton on the nuclear envelope can affect the growth of nucleus volume by biasing nuclear import. Our method, by allowing for accurate joint nuclear and cytoplasmic volume dynamic measurements at different time resolutions, highlights the non-constancy of the nucleus/cytoplasm ratio along the cell cycle.


Assuntos
Núcleo Celular , Membrana Nuclear , Animais , Humanos , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Citosol , Membrana Nuclear/metabolismo , Citoesqueleto/metabolismo , Mamíferos
16.
Trends Cell Biol ; 34(4): 272-273, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38302392

RESUMO

Cell division is a highly regulated and guardedly orchestrated process including nuclear envelope breakdown (NEBD). A recent study from Kapoor, Adhikary, and Kotak identifies the symphonic role of a phosphatase holoenzyme in NEBD.


Assuntos
Membrana Nuclear , Proteínas Serina-Treonina Quinases , Humanos , Membrana Nuclear/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , Divisão Celular , Fosforilação , Mitose
17.
J Clin Invest ; 134(7)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300705

RESUMO

Stromal interaction molecule 1 (STIM1) is a Ca2+ sensor located in the sarcoplasmic reticulum (SR) of skeletal muscle, where it is best known for its role in store-operated Ca2+ entry (SOCE). Genetic syndromes resulting from STIM1 mutations are recognized as a cause of muscle weakness and atrophy. Here, we focused on a gain-of-function mutation that occurs in humans and mice (STIM1+/D84G mice), in which muscles exhibited constitutive SOCE. Unexpectedly, this constitutive SOCE did not affect global Ca2+ transients, SR Ca2+ content, or excitation-contraction coupling (ECC) and was therefore unlikely to underlie the reduced muscle mass and weakness observed in these mice. Instead, we demonstrate that the presence of D84G STIM1 in the nuclear envelope of STIM1+/D84G muscle disrupted nuclear-cytosolic coupling, causing severe derangement in nuclear architecture, DNA damage, and altered lamina A-associated gene expression. Functionally, we found that D84G STIM1 reduced the transfer of Ca2+ from the cytosol to the nucleus in myoblasts, resulting in a reduction of [Ca2+]N. Taken together, we propose a novel role for STIM1 in the nuclear envelope that links Ca2+ signaling to nuclear stability in skeletal muscle.


Assuntos
Debilidade Muscular , Membrana Nuclear , Molécula 1 de Interação Estromal , Animais , Humanos , Camundongos , Cálcio/metabolismo , Sinalização do Cálcio , Debilidade Muscular/genética , Debilidade Muscular/metabolismo , Músculo Esquelético/metabolismo , Mutação , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Membrana Nuclear/genética , Membrana Nuclear/metabolismo , Proteína ORAI1/genética , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo
18.
Nucleus ; 15(1): 2299632, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38238284

RESUMO

The nuclear envelope (NE) regulates nuclear functions, including transcription, nucleocytoplasmic transport, and protein quality control. While the outer membrane of the NE is directly continuous with the endoplasmic reticulum (ER), the NE has an overall distinct protein composition from the ER, which is crucial for its functions. During open mitosis in higher eukaryotes, the NE disassembles during mitotic entry and then reforms as a functional territory at the end of mitosis to reestablish nucleocytoplasmic compartmentalization. In this review, we examine the known mechanisms by which the functional NE reconstitutes from the mitotic ER in the continuous ER-NE endomembrane system during open mitosis. Furthermore, based on recent findings indicating that the NE possesses unique lipid metabolism and quality control mechanisms distinct from those of the ER, we explore the maintenance of NE identity and homeostasis during interphase. We also highlight the potential significance of membrane junctions between the ER and NE.


Assuntos
Membrana Nuclear , Poro Nuclear , Membrana Nuclear/metabolismo , Poro Nuclear/metabolismo , Retículo Endoplasmático/metabolismo , Mitose , Transporte Ativo do Núcleo Celular
19.
PLoS Pathog ; 20(1): e1011936, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38227586

RESUMO

Nuclear egress is an essential process in herpesvirus replication whereby nascent capsids translocate from the nucleus to the cytoplasm. This initial step of nuclear egress-budding at the inner nuclear membrane-is coordinated by the nuclear egress complex (NEC). Composed of the viral proteins UL31 and UL34, NEC deforms the membrane around the capsid as the latter buds into the perinuclear space. NEC oligomerization into a hexagonal membrane-bound lattice is essential for budding because NEC mutants designed to perturb lattice interfaces reduce its budding ability. Previously, we identified an NEC suppressor mutation capable of restoring budding to a mutant with a weakened hexagonal lattice. Using an established in-vitro budding assay and HSV-1 infected cell experiments, we show that the suppressor mutation can restore budding to a broad range of budding-deficient NEC mutants thereby acting as a universal suppressor. Cryogenic electron tomography of the suppressor NEC mutant lattice revealed a hexagonal lattice reminiscent of wild-type NEC lattice instead of an alternative lattice. Further investigation using x-ray crystallography showed that the suppressor mutation promoted the formation of new contacts between the NEC hexamers that, ostensibly, stabilized the hexagonal lattice. This stabilization strategy is powerful enough to override the otherwise deleterious effects of mutations that destabilize the NEC lattice by different mechanisms, resulting in a functional NEC hexagonal lattice and restoration of membrane budding.


Assuntos
Herpesviridae , Herpesvirus Humano 1 , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/metabolismo , Supressão Genética , Núcleo Celular/metabolismo , Membrana Nuclear/metabolismo , Herpesviridae/metabolismo , Liberação de Vírus
20.
Curr Opin Cell Biol ; 86: 102313, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38262116

RESUMO

The nuclear lamina (NL) is a crucial component of the inner nuclear membrane (INM) and consists of lamin filaments and associated proteins. Lamins are type V intermediate filament proteins essential for maintaining the integrity and mechanical properties of the nucleus. In human cells, 'B-type' lamins (lamin B1 and lamin B2) are ubiquitously expressed, while 'A-type' lamins (lamin A, lamin C, and minor isoforms) are expressed in a tissue- and development-specific manner. Lamins homopolymerize to form filaments that localize primarily near the INM, but A-type lamins also localize to and function in the nucleoplasm. Lamins play central roles in the assembly, structure, positioning, and mechanics of the nucleus, modulating cell signaling and influencing development, differentiation, and other activities. This review highlights recent findings on the structure and regulation of lamin filaments, providing insights into their multifaceted functions, including their role as "mechanosensors", delving into the emerging significance of lamin filaments as vital links between cytoskeletal and nuclear structures, chromatin organization, and the genome.


Assuntos
Lamina Tipo B , Lâmina Nuclear , Humanos , Laminas/metabolismo , Lamina Tipo B/genética , Lamina Tipo B/metabolismo , Lâmina Nuclear/metabolismo , Membrana Nuclear/metabolismo , Núcleo Celular/metabolismo , Filamentos Intermediários/metabolismo , Diferenciação Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...